The "zero" reference depends on the axis. We set Y-zero and Z-zero at the vehicle centerline, where those axes intersect X. We based the X-zero reference on the Crew Module apex: if you extend lines down the sides of the CM, the point at the top where they intersect is X-zero. The rest of the ship is referenced from there. That's why the tip of the nose is at X minus 26.8" and why you have to add 26.8" to all dimensions if you wish to measure from the Forward Fairing nose cap instead of from Xo as shown in the configuration drawings. We labeled directions from the point of view of an observer looking up from below, the ocean at his feet. The -Z (ocean) side is thus the "bottom;" +Z (land) is the "top;" +Y (the observer's right) is "right;" and -Y (the observer's left) is "left." This all looks odd on drawings done from the perspective of one looking down from the nose of the vehicle, but makes perfect sense to one working on the hardware from underneath.
The roll patterns on the fairing and CM correspond to the vehicle axes. The +Z face is the one with two black bars as shown, -Z (the ocean side) has a single long black bar, +Y (right per our convention and from the point of view of the picture above) has a single short black bar, and -Y (left per convention) a pattern of three bars.
You'll find all this in the configuration drawings ... I carried it through to µMLAS with the added twist of angles numbered in a counterclockwise direction looking up from the bottom with -Z at 0°, -Y at 90°, and so forth. Naturally, that's differs from the MLAS convention which calls that angle omega and sets 0 at the +Z axis. The confusion just adds to the challenge.
No comments:
Post a Comment